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ABSTRACT

A new Cellular Automata model for the dynamics of sand-
pile surfaces is presented in this work. Following the BCRE
model (Bouchaud et al., 1994) main ideas, we propose the
use of two variables, instead of only the one that has been
used in Cellular Automata models so far. The model predicts
sandpile properties observed in other models, and in real sys-
tems, such as slope roughness decay or uphill propagation of
avalanches. In addition, the introduction of the second vari-
able allows the prediction of characteristics, such as the ap-
pearance of a second critical angle, that have been predicted
by continuous models. The main advantage of the proposed
model is that its formulation is simpler and easier to inter-
pret than that of the continuous models. Also, the resulting
numerical scheme is simpler and more efficient, allowing for
a wider range of applications, including interactive simula-
tion.

INTRODUCTION

Granular systems behaviour has been widely studied du-
ring the last decades, due to its many applications to indus-
try. Many works have been devoted to study the dynamics
of sandpile surfaces (Bouchaud et al., 1994; Bouchaud et al.,
1995; Aradian et al., 1999; Prigozhin and Zaltzman, 2001;
Prigozhin and Zaltzman, 2003), specially in the particular
case when the mean slope of the surface is close to the so
calledangle of repose of the system.

In the last decade, the increase in computer capabilities
has propitiated that sandpile models are used in more com-
plex simulations, with applications to film industry or virtual
reality simulation (M̈uller et al., 2003). However, classical
models are computationally expensive, and provide an in-
adequate description of the system given that its graphical
representation is necessary. Moreover, real-time or interac-
tive simulation of such systems is far from being possible.

In this work we present a new Cellular Automata model
that has been developed within a series of efforts aimed to
obtain models that allow real-time, interactive, simulation of

granular systems, for virtual reality applications.
In the next section the reader is briefly introduced in the

field of the dynamics of sandpile surfaces. Following, the
CA model is formally described and explained. Then the
dynamic properties of the model are reviewed, and compared
to those observed in empirical studies and in the continuous
model, as studied by Bouchaud et. al. in (Bouchaud et al.,
1994). Finally the results of this work are discussed.

DYNAMICS OF SANDPILE SURFACES

Schematically, sandpile surface dynamics can be de-
scribed with very few ideas. Sand grains can be piled up
until the surface of the heap is higher than theangle of re-
pose of the system. When this happens, an avalanche occurs
and some grains roll down the slope, until the slope of the
surface is again reduced below theangle of repose.

This basic idea was used by Bak et. al. (Bak et al., 1988)
to define the update rule of a Cellular Automata, in order
to illustrate the dynamics of self-organised critical systems.
Later on, other authors have proposed continuous models
aimed to describe the dynamics of sandpile surfaces which
reflect the same basic principles. Hwa and Kardar (Hwa and
Kardar, 1989; Hwa and Kardar, 1992) proposed a partial dif-
ferential equation for the dynamics of the height of the sur-
face.

Models based on this basic principle describe the system
using a unique variable, the height of the system at each
point, and reproduce the appearance of the critical angle and
also predict a smoothing of the surface of the system, reach-
ing an almost homogeneous slope along the system.

Later Bouchaud et. al. (Bouchaud et al., 1994; Bouchaud
et al., 1995) modified that model in order to introduce two
variables, instead of just the height of the system. Their mo-
del considers two layers; a static layer, of resting material
grains, and a rolling layer that contains the grains that are
falling down the slope. They considered the interchange of
matter among the two layers, and also added a convection
term to the dynamics of the rolling layer. The main contri-
bution of the work by Bouchaud et al. was the prediction of
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a second critical angle. If the mean slope is above this angle
any perturbation leads to a catastrophic avalanche.

This work has become a referent in this field, and has mo-
tivated several other works, aimed both to the refinement of
their model (Aradian et al., 1999; Hadeler and Kuttler, 1999;
Prigozhin and Zaltzman, 2001; Prigozhin and Zaltzman,
2003) and to its application to industry problems (Hadeler
and Kuttler, 2001).

However, the use of continuous models (based on Partial
Differential Equations (PDEs)) for the description of the dy-
namics of sandpile surfaces involves many technical consid-
erations from the computational point of view.

The numerical schemes used in the solution of PDEs try
to give a very precise solution to the equations. But, in con-
trast with the high precision that is sought with usual PDE
methods, all the models mentioned above are phenomeno-
logical models; this means that the inner interaction between
the particles of the system are nor considered individually.

In those works, the analysis of the results focus on qualita-
tive aspects, and only medium to large scale behaviour of the
system is considered. For this reason, the degree of precision
that can be achieved with the solution of a set of PDEs is un-
necessary. In other words, the effort to implement a PDEs
method and its computational cost is somehow too hard for
the analysis that will be done on the data.

The Cellular Automata approach proposed by Bak et. al.
(Bak et al., 1988), which is computationally simpler and
closer to the motivating ideas of the model, has not played
a relevant role in the study of sandpile surface dynamics. In-
stead, this approach has been used in works that study statis-
tical properties of granular systems (Prado and Olami, 1992;
Nerone and Gabbanelli, 2001; Chen and Nijs, 2002), and as
a paradigmatic approach to critical systems modelling.

More recently, Pla-Castells et. al. (Pla-Castells, 2003; Pla-
Castells et al., 2004) have proposed a variation of Cellular
Automata models in order to achieve a better description of
the surface dynamics using Cellular Automata. The main
motivation of these works was to obtain a computational mo-
del that can be used for real-time interactive simulation of
granular systems, in applications such as driving simulators
or virtual reality environments. With the requirement of real-
time in mind, Cellular Automata models have proven a very
reliable approach to the problem, that highly overcomes the
performance of continuous models, and of Discrete Event
Modelling (Müller et al., 2003).

In this work we go further and show that Cellular Au-
tomata models can provide the same predictions as contin-
uous models do, by means of simpler and more efficient mo-
dels. We analyse the qualitative behaviour of a two variable
Cellular Automata model in order to show that its dynamics
has the main properties predicted by the well known BCRE
model. Specially, it is shown that the introduction of a second
variable in the Cellular Automata model leads to the same
behaviour as that observed in the continuous model.

PROPOSED MODEL

The model is described following the notation by
Bouchaud et. al. (Bouchaud et al., 1994). For simplicity,
it is presented for a one-dimensional Cellular Automata, for
which two variables are considered at each cell; the height of
the standing layerh(i, t) above the centre of celli, and the
height of the rolling layerR(i, t), at timet. Two parameters
are considered for the dynamics of the rolling layer; the drift
velocity of the rolling grainsv, and a diffusion constantD. A
parameterγ controls the exchange of matter among the two
layers, together with theangle of repose, Sc.

Also, some additional parameters related to the Cellular
Automata description of the system are considered.N is the
number of cells of the system andd is a cell’s length; the
system will have a length ofN × d length units. The neigh-
bourhood of celli (the set of cells that directly influence its
evolution) is taken as the set of cellsV = {(i− 1), (i + 1)}.

Formal Cellular Automata Model

The Cellular Automata is described as

CA = 〈M,V,S,ϕ〉 (1)

where

• M = {(i) ∈ N, 1 ≤ i ≤ N} is the set of cells that form
the Cellular Automata.

• V is the neighbourhood of a cell, as described above.

• S = Sh × SR is the set of possible states for each cell:

Sh = R is the height of the static layer;

SR = R is the height of the rolling layer.

• ϕ : S3 → S is the transition map of the Automata.

The Transition Map

Given a cell, the transition map,ϕ : S
3 → S, takes the

value of its current state (the value of its variables) and that
of its neighbours, and determines its new value after a time
stepthe new state the state of a cell after a time step. The
transition map is computed as follows.

For each cell(i) ∈M, let h ∈ Sh, the height of the static
layer andR ∈ SR the height of the rolling layer above the
cell. The gradient of each layer is computed, using the dif-
ference of height with the neighbour cells:

dh(i) =
h(i + 1)− h(i)

d
(2)

dR(i) =
R(i + 1)−R(i)

d
(3)

Then, each cell is updated as follows

R(i) ← R(i) + (−vR(i) + DdR(i))

−R(i)γ(dh(i)− |Sc|) (4)

h(i) ← h(i) + R(i)γ(dh(i)− |Sc|) (5)

R(i + 1) ← R(i + 1)− (−vR(i) + DdR(i)) (6)
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ANALYSIS OF THE MODEL

The introduction of a second variable in the model leads,
in the continuous case, to the existence of a second critical
angleSd, for the static layer (Bouchaud et al., 1994). If the
mean slope of the static phaseS0 is above this second crit-
ical angle,S0 < Sd, any avalanche leads to a catastrophic
phenomenon, in which the static layer looses all of its matter
while the rolling layer grows along the whole slope.

This behaviour can also be observed in the proposed Cel-
lular Automata model; with the introduction of a second vari-
able in the model, a second critical value is observed in the
slope of the system. The sandpile surface dynamics, in this
case, is similar to that observed in the continuous model. Fig-
ure 1 shows the results of a simulation that illustrate this be-
haviour.
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Figure 1: Evolution along time of a perturbation of the
rolling layer at the bottom of the slope. The different lines
indicate the profile of the static layer at successive instants
of time. In this case, it can bee seen that the thickness of the
static layer decreases until it is almost zero. The parameters
of the model werev = 0.1, D = 0.1 andγ = 0.01

Also, the dynamics of the single-variable models can still
be observed; the new model is an extension of previous ones.
The numerical experiments performed so far reveal the fol-
lowing relevant properties.

1. If a system with slope close to theangle of repose is
perturbed locally, then an avalanche occurs. The result
is that the surface returns to an angle below the critical
angle (see Figure 2).

2. Surface roughness tends to dissipate, due to the diffu-
sion terms in the model. This makes that a perturbation
spreads down the slope instead of just travelling across
it.

3. Propagation of avalanches happens not only down-
wards, but also upwards, as predicted by continu-

ous models and observed in real granular systems
(Bouchaud, 1998; Daerr and Douady, 1999; Aranson
and Tsimring, 2001) (see Figure 3).
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Figure 2: Evolution along time of a perturbation of the
rolling layer on top of the slope. The dashed line indicates
the initial profile of the rolling layer, while the differentcon-
tinuous lines indicate its successive distributions. The static
layer has a slope to the right, slightly lower than therepose
angle. The parameters of the model werev = 2.5, D = 0.1
andγ = 0.01.
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Figure 3: Evolution along time of a perturbation of the
rolling layer in the middle of the slope. Again, the dashed
line indicates the initial profile of the rolling layer, while
the different continuous lines indicate its successive distri-
butions. The region affected by the avalanche includes part
of the cells above the initial perturbation. The parametersof
the model were the same as in Figure 2.

Thus, the new model provides a proper description of the
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dynamics of sandpile surfaces, with the additional advan-
tages observed in Cellular Automata models:

1. Cellular Automata models are discrete in space, thus the
computation is not performed on a discretization of the
data, but on the data itself.

2. Due to the statistical properties of the dynamics of gra-
nular systems, and more precisely, to the fact that they
often reflect self-organised criticality, the implementa-
tion of two-dimensional systems allows an exhaustive
optimisation of the model. This leads to a computa-
tional cost that is linear respect to the side of the system,
instead of quadratic.

3. The discrete description of the system is also very ade-
quate for the graphical representation of a granular sys-
tem. This makes Cellular Automata models more suit-
able for its use in computer graphics applications (such
as virtual reality or simulation for training).

Part of the validation is still ongoing, and some charac-
teristics observed in sandpile surfaces, such as the statistical
properties of the model, have not been investigated in depth
yet. However, preliminary simulations, together with previ-
ous results obtained with similar models (Pla-Castells, 2003)
give a good level of confidence that they will be met.

CONCLUSIONS

A Cellular Automata model for the dynamics of sandpile
surfaces has been presented in this work. Previous Cellu-
lar Automata models already were able to reflect the main
characteristics observed in the dynamics of sandpile surfaces,
such as statistical properties of avalanches, slope roughness
decay or uphill propagation of avalanches.

The new model extends such properties, by means of the
introduction of a second variable; both the static and the
rolling layer are considered, as in the well known BCRE mo-
del. The introduction of two variables, which is new to Cel-
lular Automata description of sandpiles, allows to predicta
second critical angle, as continuous models and experimental
results did.

The success in the prediction of such property of the dy-
namics of sandpile surfaces, shows that proper models can
be obtained without the need of PDEs, just using a simple
model based upon a local phenomenological description of
the dynamics. This description is simpler to understand and
to implement than PDEs, and it avoids unnecessary technical
considerations needed for the numerical solution of differen-
tial equations.

Although a lot of work is still to be done, the prelimi-
nary results of this work show that a reliable and efficient
family of models can be available for the description of the
dynamics of granular systems’ surface. Together with other
works, already presented by the authors in the field of inter-
active models of granular systems (Pla-Castells et al., 2006),

the final results of this ongoing research open the possibility
to develop interactive simulators involving granular systems
in the short term.
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