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ABSTRACT

Modelling and simulation of granular materials is an ac-
tive research field with applications in many industry
sectors. Topics of interest range from microscopic prob-
lems, such as grain segregation to macroscopic phenom-
ena, such as avalanches. The BCRE model (from the
authors’ names, Bouchaud, Cates, Ravi Prakash and
Edwards) is a model that describes the evolution of an
avalanche as a thin layer of rolling material over a basis
of static grains. The model uses a system of two par-
tial differential equations to compute simulations of the
avalanche process. Depending on the numerical scheme
used to solve the equations, there are some phenomena
appearing in real avalanches which are not properly re-
produced in the simulation. In this paper we focus on
the lateral expansion of an avalanche that slides down a
slope. We analyse two different finite difference schemes
that can be used to solve the equations and prove that
only one of them can simulate some expansion processes
observed in real avalanches. We perform several simula-
tions to show the properties deduced from our analysis.

INTRODUCTION

Granular materials are present in many natural pro-
cesses, like avalanches of sand or snow. The study of
granular systems can play an important role in different
industries such as mining, chemical industry or geotech-
nics. In sectors where manipulation of granular materi-
als is done with heavy machinery it is common that Vir-
tual Reality simulators are used in order to train the op-
erators (Garćıa-Fernández et al. (2011)). Our research is
motivated by the use of granular systems in Virtual Re-
ality applications that involve granular systems, such as
earthmoving scenarios or industrial environments that
involve bulk materials (coal, fertilizers or grains). In
these simulators, a proper simulation and visualization
of avalanches and their evolution is necessary.

We address the problem of finding an appropriate nu-
merical scheme to solve models of avalanches based on

partial differential equations. We compare two finite dif-
ference schemes and prove that one of them can simulate
the observed shape of real avalanches, while the other
one does not propagate according to such observations.
In this section we give an introduction to the problem of
avalanche modelling and describe the BCRE model of
avalanche evolution. In the next section we present our
analysis to compare two finite difference schemes used to
develop simulations of avalanches. Finally, we present
some numerical tests to illustrate our results.

Avalanches in Granular Materials

Granular materials have a property known as the crit-
ical slope angle. When the slope of the granular sys-
tem exceeds this angle, a layer of grains starts flowing
over the surface of the system, causing an avalanche.
The existence of this critical angle is a macroscopic fea-
ture resulting from internal friction, and it depends on
the properties of the granular material, such as grain
size distribution, grain shapes, roughness of surface or
material moisture. Most models assume that, during
an avalanche, there is a static layer, made of immobile
grains, and a rolling layer, made of grains that are slid-
ing down the slope. The interested reader can find fur-
ther information about the properties of avalanches in
granular systems in the works by Savage and Hutter
(1991), Duran (1999), Prigozhin and Zaltzman (2001),
Aradian et al. (2002), Prigozhin and Zaltzman (2003).
Bouchaud et al. (Bouchaud et al. (1994)) proposed an
analytical model for an avalanche, the so called BCRE
model (from the authors’ names, Bouchaud, Cates, Ravi
Prakash and Edwards), which is based on a phenomeno-
logical description of the process. The BCRE model
consists of two equations that describe the evolution of
the static layer, u(x, t), and the rolling layer, v(x, t):

vt = ∇ (v∇u)− (1− |∇u|)v + f
ut = (1− |∇u|)v (1)

The equation (1) has been normalized so that the model
parameters have value 1 (see the work by Hadeler and
Kuttler (1999) for more details). The first equation
shows two terms, a transport term ∇ (v∇u) and a term
that accounts for material exchange between layers,
(1 − |∇u|)v. The term f represents a source of gran-



ular material, which allows the introduction of material
in the system. This model has been revisited by several
authors (Alamino and Prado (2002), Shen (2007), Shen
and Zhang (2010), Colombo et al. (2012), Cattani et al.
(2012)). The formulation used in this paper is a two
dimensional version of the model proposed by Hadeler
and Kuttler (1999).
According to empirical studies, an avalanche caused at a
point in a slope extends forming a characteristic shape.
The works by Daerr and Douady (1999) and Daerr
(2001) describe two main behaviours. When there is
an avalanche formed by a thin rolling layer, it will grow
laterally on its way down, forming a triangular shape,
whereas avalanches with a thick rolling layer also prop-
agate upwards, eventually causing the whole slope to
slide. In both cases, the avalanche not only propagates
down the slope but also extends sideways.
In our work we want to simulate avalanches in a slope of
granular matter using a discretisation of the system of
equations (1). Falcone and Vita (2006) propose a finite
difference scheme for the BCRE model and derive a con-
dition for consistency and convergence. However, when
using this numerical scheme to simulate an avalanche
generated at an isolated point in a slope, it can be ob-
served that avalanche evolution does not show lateral
diffusion or uphill avalanche propagation, as described
before. As an alternative to this finite difference scheme,
we propose the use of the Lax-Friedrichs scheme (Strik-
werda (2004)).
In the next section we compare the lateral diffusion of
an avalanche when simulated with the scheme proposed
by Falcone and Vita (2006) (the FV scheme from now
on) and with the standard Lax-Friedrichs finite differ-
ence scheme. More precisely, the evolution of a point
that is next to the avalanche area is obtained, show-
ing that the FV scheme will not propagate sideways or
upwards.

LATERAL AVALANCHE DIFFUSION IN FI-
NITE DIFFERENCE SCHEMES

The goal of the analysis presented in this section is to
quantify the lateral and uphill expansion of an avalanche
in a slope. We shall focus on a system with an active
avalanche, and will analyse the evolution of a point of
the finite difference grid that is next to the avalanche,
but not affected by it.
We shall consider a regular grid aligned with the X and
Y axes, that discretises the spatial domain of the prob-
lem. The grid spacing will be denoted as h and the time
step for the numerical time integration will be denoted
as ∆t. The nodes of the grid will be denoted by indexes
(i, j). The value of the discretised solution of (1) at grid
point (i, j) and time tn = t0 + n∆t will be denoted as
(un

i,j , v
n
i,j).

Let’s consider a grid point (i, j) that has no active
avalanche at time tn. As the thickness of the avalanche

is given by v(x, t) in (1), this is equivalent to vni,j = 0.
And let’s consider that this point is in the border of an
active avalanche, so that only one of the adjacent nodes
has active avalanche. Without loss of generality we shall
assume that it is node (i− 1, j), having

vni−1,j > 0; vni+1,j = vni,j+1 = vni,j−1 = 0. (2)

Moreover, we shall consider that no rolling material is
being added at point (i, j) by an external source, thus
fi,j = 0. Figure 1 shows the situation that is described.
In the figure, nodes with double circle represent loca-
tions with avalanche, while the ones with only one circle
correspond to locations with no avalanche.

vi,j vi+1,j

vi,j+1

vi,j-1

vi-1,j

Figure 1: The scenario considered in the analysis. A
regular grid is used to discretise the domain. Nodes
with double circle indicate the existence of material in
the rolling layer. The point of interest is the node (i, j),
which is not affected by the avalanche but is next to a
node affected by it.

We are interested in the situation when point (i, j) is lo-
cated uphill or at the same level than the point with an
active avalanche (i− 1, j). Thus, we shall consider that,
at point (i, j), the slope does not go down in the direc-
tion from grid point (i, j) to grid point (i+1, j). That is
to say that the gradient of the static layer, Dui,j(x, t),
has a positive or null first coordinate,

Duij(x, t) = (a, b); a ≥ 0, b ∈ R. (3)

Next we show that using the FV finite difference scheme
the avalanche has no effect on point (i, j) whereas in
the Lax-Friedrichs finite difference scheme point (i, j)
changes its value.

Analysis of the FV Finite Difference Scheme

The explicit finite difference scheme proposed by Fal-
cone and Vita (2006) to integrate the BCRE model can



be written as

vn+1
i,j = vni,j + ∆t

[
vni,jD

2un
i,j +

+ Dvni,j ·Dun
i,j −

(
1−

∣∣Dun
i,j

∣∣) vni,j], (4)

un+1
i,j = un

i,j + ∆t
(
1−

∣∣Dun
i,j

∣∣) vni,j ,
where the involved differences are as follows. For any
quantity A taking values on the grid, the lateral differ-
ences are defined as

D−
x Ai,j =

Ai,j −Ai−1,j

h
; D+

x Ai,j =
Ai+1,j −Ai,j

h
;

(5)

D−
y Ai,j =

Ai,j −Ai,j−1

h
; D+

y Ai,j =
Ai,j+1 −Ai,j

h
.

According to Falcone and Vita (2006), the gradient
Dui,j is computed choosing the lateral differences that
maximize |Dui,j |. The gradient of v, denoted by Dvi,j ,
is approximated by the uphill finite differences with re-
spect to Dui,j , defined as

Dxvi,j ≡

 D+
x vi if Dxui > 0, D+

x ui > 0,
D−

x vi if Dxui < 0, D−
x ui < 0,

0 otherwise.
(6)

The definition for Dyvi,j is analogous. Finally, D2ui,j

is approximated using the standard central difference of
order two

D2ui,j =
ui,j−1 + ui,j+1 − 4ui,j + ui−1,j + ui+1,j

h2
.

Using the previous definitions, the value of vn+1
i,j can

now be computed from (4). The first term, involving
the second order difference is zero, since vni,j = 0, and
the last term is also null for the same reason, leaving

vn+1
i,j = ∆t

[
Dvni,j ·Dun

i,j

]
. (7)

The x component of the gradient Dvni,j is given by (6).
According to the condition (3) the gradient of u accom-
plishes Dxu

n
i,j = a > 0 and

Dxv
n
i,j ≡

{
D+

x v
n
i,j if D+

x u
n
i,j > 0

0 otherwise.

Now, by equation (2), vni,j = vni+1,j = 0 and D+vni,j = 0,
leading to

Dxv
n
i,j = 0.

Moreover, the y component of Dvni,j is also zero since,
again by (2), vni,j−1 = vni,j = vni,j+1 = 0 and

D+
y v

n
i,j = D−

y v
n
i,j = 0. (8)

Plugging (8) into (7) it is finally seen that

vn+1
i,j = 0. (9)

Analysis of the Lax-Friedrichs Finite Difference
Scheme

The equation for the rolling layer v(x, t) in (1) can
be discretised using the Lax-Friedrichs finite difference
scheme (Strikwerda (2004)) leading to:

vn+1
i,j = vni,j + ∆t

[
vni,jD

2un
i,j + Dvni,j ·Dun

i,j−
−(1−

∣∣Dun
i,j

∣∣)vni,j] (10)

In this case, the gradients are computed by central dif-
ferences

Dxv
n
i,j =

vni+1,j − vni−1,j

2h
; Dyv

n
i,j =

vni,j+1 − vni,j−1

2h
,

(11)
and the value of vnij is approximated by

vni,j =
vni+1,j + vni−1,j + vni,j+1 + vni,j−1

4
(12)

From equation (10), and taking into account that vni,j =
0, we can derive the increment of the rolling layer as

vn+1
i,j = vni,j + ∆t

[
Dvni,j ·Dun

i,j

]
(13)

Using the hypotheses that only vni−1,j 6= 0, expressed by
equation (2), and that Dxu

n
ij = a, by equation (3), we

can develop the dot product in equation (13). Using the
central differences (11),

Dvni,j ·Dun
i,j =

(
vni+1,j − vni−1,j

) (
un
i+1,j − un

i−1,j

)
4h2

+

+

(
vni,j+1 − vni,j−1

) (
un
i,j+1 − un

i,j−1

)
4h2

= −
vni−1,j

2h

(
un
i+1,j − un

i−1,j

2h

)
= −

vni−1,j

2h
a. (14)

Applying again that only vni−1,j 6= 0, the approximation
to vni,j given by (12) results in

vni,j =
vni−1,j

4
. (15)

Finally, substituting (14) and (15) into (13), we have
that using the Lax-Friedrichs finite difference scheme
the value of the rolling layer at point (i, j) will be

vn+1
i,j = vni,j + ∆t

[
Dvni,j ·Dun

i,j

]
=

= vni−1,j

(
1

4
− a

∆t

2h

)
, (16)

producing a change in the value of vni,j in any situation.
The only case when (16) vanishes is in the particular
situation when a = h

2∆t . This situation, however, is un-
likely to last in time, since the evolution of the avalanche
will cause that the situation disappears in very few time
steps.



Discussion

In the last two subsections we have proved that, un-
der the assumptions (2) and (3), the finite difference
scheme proposed in the work by Falcone and Vita (2006)
only propagates an avalanche provoked at a point in
the downhill direction of the simulated granular system.
Under the same conditions, but using the Lax-Friedrichs
finite difference scheme, avalanches expand in all direc-
tions, showing an evolution that is more coherent with
empirical studies.
Thus, the FV scheme is adequate for situations of mas-
sive avalanches, where the lateral avalanche expansion
is not relevant, as shown by Falcone and Vita (2006) in
their work. Moreover the FV scheme is known to be con-
vergent and stable under certain conditions. However,
in situations where the avalanche starts as a more lo-
cal process and we are interested in the geometry of the
avalanche as it evolves, the averaging term in the Lax-
Friedrichs scheme leads to better qualitative results.
To the best of our knowledge, there is no convergence
and stability analysis for the Lax-Friedrichs scheme ap-
plied to this problem. In our numerical tests, described
next, we have used the same criteria for both numeri-
cal schema, and stability has been achieved in the two
methods.

NUMERICAL TESTS

We have simulated an avalanche on a static slope with
45 degrees of inclination. We provoke the avalanche in a
bounded region, discretised as a square of 3×3 grid cells,
by increasing the amount of material in the rolling layer.
The whole system is discretised by a grid of 80×80 cells.
Figure 2 shows the evolution of the avalanche, using
the finite difference scheme proposed by Falcone and
Vita (2006). In the figure, the slope points in the down
direction. The figure shows the region occupied by the
avalanche after 2.8 seconds (left) and the intermediate
states after every 0.2 seconds of simulation time. As
predicted, the material flows down the slope, but it does
not slide laterally, perpendicular to the main slope, and
does not expand uphill.
Figure 3 shows the evolution of the avalanche simulated
with the Lax-Friedrichs finite difference scheme. The
figure shows a similar representation as the depicted in
the previous figure. In this simulation, the avalanche
slides down the slope and expands laterally. Moreover,
it can be observed that the avalanche also propagates
upwards. This reproduces real avalanche behaviour, in
which grains located uphill progressively tumble down
because of loss of support, as it is described in Daerr
and Douady (1999).
Recalling the motivation of this work, we have imple-
mented a graphical simulation, in order to show the ap-
plication of the results in the context of a Virtual Reality
environment. In Figure 4 we show an OpenGL visualiza-

Figure 2: Avalanche propagation using the FV finite
difference scheme. Left image shows the silhouette of
avalanche after 2.8 seconds from the start. Right image
shows the expansion of the avalanche in intervals of 0.2
seconds. The black spot indicates the point where the
avalanche was generated.

Figure 3: Avalanche propagation using the Lax-
Friedrich scheme. The image shows the silhouette of
avalanche after 2.8 seconds from the start. The lines
indicated the expansion of the avalanche in intervals of
0.20 seconds.

tion of the model using both numerical finite difference
schemes. The visualization is done by means of texture
advection as described by Rodriguez-Cerro et al. (2015)
on a triangle mesh that is built upon the discretisation
of the BCRE model.
Since computation time is relevant in the models used
in Virtual Reality simulations, it is noteworthy that the



Figure 4: An OpenGL visualization of an avalanche sim-
ulated using the FV finite difference scheme (top) and
the Lax-Friedrichs finite difference scheme (bottom).

two finite difference schemes are explicit schemes and
require a number of computations of the same order of
magnitude.

CONCLUSION AND FUTURE WORK

We have addressed the simulation of avalanches in a
slope of granular matter using two finite difference dis-
cretisations of the BCRE model. We have proved
that the scheme proposed by Falcone and Vita (2006)
does not propagate laterally and upwards on the slope.
This behaviour is not consistent with the behaviour of
avalanches observed by empirical studies (Daerr and
Douady (1999)). We have also demonstrated that the
Lax-Friedrich finite difference scheme, applied to the
BCRE model, produces the formation of avalanches that
have a shape more consistent with the aforementioned
empirical observations. An analysis of stability and con-
vergence of the Lax-Friedrichs scheme has yet to be done
for this particular problem.
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