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Abstract. A model of a cable and pulleys is presented that can be used in Real Time Computer Graphics applications. The
model is formulated by the coupling of a damped spring and a variable coefficient wave equation, and can be integrated in
more complex mechanical models of lift systems, such as cranes, elevators, etc. with a high degree of interactivity.
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INTRODUCTION

Physically based modelling has become, specially in the last years, one of the key subjects in many Real-Time Com-
puter Graphics (RTCG) applications; simulation for training, video-games, Virtual Reality learning applications,.. . all
of them share the need of a simulated environment, in which the user is immersed. Every mechanical or logical system
involved in the simulation has to be properly modeled, in order to maximise the feeling ofpresence(the feeling of
being there), and to achieve the particular goals of the application; e.g. in a driving simulator for training, the vehicle
model has to be accurate enough so that the necessary drivingskills can be acquired by the subject.

However, better results are not always reached with a more exact or realistic model; beyond certain level of
exactness, the difference between two different models cannot be appreciated by the user. Other aspects, such as
a proper geometric modelling of the environment, or an adequate and constant frame rate can make the difference
between a good application and a useless system. Indeed, thehigh computational cost of the graphic representation of
the scene, often leaves a narrow margin in the dynamic modelsthat, in addition, have to be simulated in real time. For
this reasons, a low computational cost is a must for any modelthat has to be used for RTCG applications.

Another characteristic of RTCG applications is their complexity, involving models of very different kind of systems,
and their high degree of interactivity. Thus, the capability of a certain model to be integrated in an interactive manner
within a complex application, and its flexibility to simulate a wide range of situations, are usually very appreciated
features, rather than a very accurate model.

Within the field of simulation for training, crane simulators have become a useful tool in many industry fields, as
training is dangerous and expensive, and also because many situations can be reproduced in a simulator and not with a
real crane, for safety reasons. Such simulators involve complex mechanical systems of the machinery and of the loads,
but one of the aspects most poorly modeled so far is pulley andcable systems, used in most cranes.

Pulley and cable dynamics

Cable dynamics has been extensively studied from differentmodelling methodologies [1, 2, 3] leading, in most
cases, to non-linear partial differential equations or to finite element schemes. These models, however, are addressed
to a good understanding of the problem or to an accurate simulation, useful for structure analysis or design, and the
associated numerical models are computationally intensive and not adequate for RTCG applications. Also, a common
problem not often considered [4], is the pay-out/reel-in process, that is the basis of load lift and boom movement.

By the other side, cable-pulley models can be found as elements for finite element analysis [5, 6, 7], or in analysis of
traction systems such as elevators or transport belts [8, 9]. But, as in the previous case, models found in the bibliography
are computationally to expensive to our needs. Moreover, they usually do not consider the dynamics of the cable
between two pulleys.



We present a computationally efficient model for a cable and aset of pulleys attached to rigid bodies. The model
considers both the forces that appear on these bodies, and the oscillatory movement of the cable segments, as well as
the pay-out/reel-in process. Also, it allows an straightforward integration in complex simulation environments, with
the possibility of collision with other bodies in the environment.

The rest of the paper is organised as follows. First a description of the system, based upon a damped spring
is presented, together with some notation. Then, the wave equation with variable coefficients is proposed for the
simulation of the oscillation of the cable between pulleys.Later, the two models are coupled, in order to obtain a
unique model, paying attention to some implementation issues.

CABLE AND PULLEYS MODEL

In this section we describe the model that provides the tension of the cable from the position of every pulley. It allows
the dynamic interaction of the cable-pulley system with therest of the simulated environment.

The cable is first considered as a force element that acts on the bodies linked to it. A cable suspended by its ends is
considered as a massless, damped spring. The stiffness constant of the spring is given by the young modulusE of the
cable and by its lengthL, ask = E/L. Thus, two forces will appear at both ends of the cable if the distance between
theml is grater than the original (undeformed) length of the cableL. This force, that we will call tension, is given by

T =

{

max
(

E
L (l −L)−c(lt −Lt),0

)

if l > L

0 otherwise.
(1)

wherec is a damping constant, which depends on the properties of thecable. HereLt represents the rate of shortening
or lengthening of the cable per unit time, considering the pay-out/reel-in process, andlt the change rate of the distance
l , per unit time. The maximum, applied at (1), bans the possibility that repulsion forces might appear due to the
damping term. According to this model, no variation in the tension is possible along the cable, avoiding the related
calculus and preventing from possible instabilities due tohigh frequency modes.

Now let us address a cable that passes through a set of points,that represent pulleys attached to the world or to
some bodies. The pulleys are considered massless and frictionless, allowing free movement of the cable along them,
and tension at both sides of the pulley to be the same [2]. Let us consider a set of nodesP0, . . . ,PN, everyone of them
possibly attached to a body. We shall denote the Euclidean distance between nodesi andi +1 asl i = |~di | = |Pi+1−Pi |
for i = 0, . . . ,N−1. Let us make a cable pass through this succession of points;every node is considered as a pulley,
while nodes 0 andN are considered as the points where both ends of the cable are rigidly linked.

Just applying the scheme presented above, the tension is obtained by calculating the difference between the length
of the cableL and the sum of the distances of neighbour nodesl = ∑ l i . Once the tension is obtained, it can be applied
to every body that is attached to one of the pulleys of the system.

Before every step of the simulated world, distancesl i , and the current length of the cablel = ∑ l i together with their
change rates, are calculated. Then, tensionT is calculated, using (1). At every pointPi attached to a body, apply forces
F−

i = −T~di−1/l i−1 andF+
i = T~di/l i , except at nodesP0 andPN where onlyF+

0 andF−
N−1 are applied, respectively.

CABLE OSCILLATION MODEL

In the model depicted so far mass is deprecated, and thus no inertia nor oscillation of a cable segment are considered.
This has two negative effects in the simulation; the bodies attached to the cable are not affected at all by these
phenomena, and the visual quality of the simulation is reduced. To overcome these drawbacks a model based on
the wave equation will be coupled with the spring model in order to consider cable oscillations.

The wave equation with variable coefficients

The evolution of an elastic string, suspended by its ends, damped, and under the action of an external forceF(x, t),
is given by the partial differential equation [10]

utt +cut = a(t)2uxx+F(x, t); u(0, t) = g(t); u(l , t) = h(t), (2)
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FIGURE 1. Variables of the oscillation model

whereu(x, t) is the distance of pointx on the string, from the segment that joins both ends, at timet. Functiona(t)
represents the propagation speed of a pulse along the stringat timet, and depends on the string tensionT(t) and density
ρ by the relationshipa2 = T/ρ. The wave equation with variable coefficients has been studied by many authors, both
analytically and numerically [11, 12, 13]. Equation (2) canbe scaled by means of the change of variablels= x, leading
to an equivalent model in the unit interval:

utt +cut =
a2

l2 uss+F(ls, t); u(0, t) = g(t); u(1, t) = h(t). (3)

Oscillating cable

Let us consider the cable segment that goes from pointPi to pointPi+1. Now the oscillation of the points of the cable
is to be considered. In order to clarify the presentation, the 2-dimensional case will be considered,Pi =

(

P1
i ,P2

i )
)

∈R2

Under the previously stated assumptions of constant tension and density across the cable, let us consider a point at
the cable betweenPi andPi+1, and letx be the horizontal distance of the point fromPi . The transversal deviation of this
point will be denoted asu(x, t) (see Figure 1). Using the scaled equation (3), the evolutionof u(x, t) can be modeled
by

utt +cut =
T

ρ(l1
i )2

uss+F(ls, t); u(0, t) = P2
i (t); u(1, t) = P2

i+1(t). (4)

This model is a variable coefficient equation, as both the tension of the cableT and the horizontal distance between
the nodesl1

i = |P1
i+1−P1

i | are time dependent.
At this point a remark is necessary in order to justify the useof equation (4); the time dependence ofl i , makes that

in the variable changels = x, time derivatives ofu(s, t) involve partial derivatives respect to the spatial variables, as a
result of the chain rule application. However, equation (4)is the equation chosen for the model, neglecting such terms.
In order to understand this reason, a note on the magnitudes of ρ , T andl is necessary.

A steel cable of the type used in a tower crane has a density of 1-2kg/m, and usually works under a tension between
5000N and 50000N (higher in the case of heavy load cranes), with lengths between pulleys of 5-50m. If these numbers
are introduced in the equation, the neglected terms are several orders of magnitude smaller than those in equation (4).

So, even though the used model is less accurate when cable length is varying, the nonlinear wave equation (4)
still gives a behaviour that is within the needs of our application with less computational cost, and has the important
advantage that finite difference schemes inherit the stability properties of the constant coefficient version [13].

COUPLING OF THE MODELS AND DISCUSSION

Two models have been presented so far, for the dynamic simulation of a cable and pulleys system; the one for the
global tension, that provides the means for interacting with the environment (application of forces), and the other, that
simulates the movement of the cable between nodes. Now a coupling between the models will be proposed, in order
to develop a unique model that considers both behaviours.

The first model proposed in this work takes as its input the actual (deformed) length of the cable, calculated from
the position of the nodes. This input is given by the evolution of the environment by the evolution of these positions.
Then a tension is computed, that provides the forces that form the output, influencing the dynamics of the environment.
The second model takes as input the tension of the cable and the length of each segment, and provides the transversal
displacement of the cable at every point.



The output of the first model (the tension of the cable) is the input of the wave equation model. In order to close
the loop, the calculation of the input of the spring model to take into account the shape of each cable segment; the
deformed length of the cable will be the sum of the arc lengthsof every cable segment, according to the wave equation
model. Using an explicit finite difference scheme for the solution of the wave equation, the algorithm can be depicted
as follows:

1. Using last value ofT andl i , evolve one step of the finite difference scheme for the wave equation,
2. Calculate an approximation to the arc length of every segment l̂ i , and current cable lengthl = ∑ l̂ i
3. Calculate the new value of tensionT using formula (1),

4. At every pointPi , apply forcesF−
i = −T~di−1/l i−1 andF+

i = T~di/l i , except at nodesP0 andPN where onlyF+
0

andF−
N−1 are applied, respectively.

Simulation Results

The proposed model has been implemented and integrated in two crane simulators; a Tower Crane simulator and a
Rubber Tyred Gantry Crane simulator. Some efficiency comparisons have been done, with a multibody chain model
similar to the one presented in [4]. The results are highly satisfactory, as the computational cost of the proposed scheme
is between one tenth and one fiftieth of the cost of the multibody approach using the augmented formulation approach.
Indeed, the cost of the multibody approach provoked the lossof Real-Time once the total number of chain nodes was
between 25 and 30, with severe instability problems in many near-singular configurations.

CONCLUSION

A cable and pulleys system dynamics model has been presentedand explained. A combination of a simple spring
model together with a variable coefficient wave equation leads to a straightforward computational scheme, for the
simulation of cable-pulleys systems. This model covers themain needs of real-time computer graphics simulations;
low computational cost and the capability of performing interactive simulations in complex simulation environments.

The model is integrated in a very straightforward manner in mechanical models of cranes, bridges, etc. for its
output is a set of forces applied at given points. Collision detection, together with a dynamic node insertion and
deletion procedure, can be easily integrated, allowing forfull interactivity. No cable model has been found so far in
the bibliography, with such capabilities for real time interactive simulation.

As a continuation of this work, a more in depth evaluation of the neglected terms in the wave equation with variable
length has to be done. Also, the possibility of using different finite difference schemes, seeking for efficiency and
stability has to be evaluated.
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