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Abstract. A model of a cable and pulleys is presented that can be used in Real Timpufer Graphics applications. The
model is formulated by the coupling of a damped spring and a variabféaiest wave equation, and can be integrated in
more complex mechanical models of lift systems, such as craneat@ievetc. with a high degree of interactivity.
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INTRODUCTION

Physically based modelling has become, specially in theykars, one of the key subjects in many Real-Time Com-
puter Graphics (RTCG) applications; simulation for tramivideo-games, Virtual Reality learning applicationsall

of them share the need of a simulated environment, in whieghigler is immersed. Every mechanical or logical system
involved in the simulation has to be properly modeled, ineoridh maximise the feeling giresencethe feeling of
being therg, and to achieve the particular goals of the application; ie.a driving simulator for training, the vehicle
model has to be accurate enough so that the necessary dskillsgcan be acquired by the subject.

However, better results are not always reached with a moaetex realistic model; beyond certain level of
exactness, the difference between two different modelsaatalbe appreciated by the user. Other aspects, such as
a proper geometric modelling of the environment, or an adegjand constant frame rate can make the difference
between a good application and a useless system. Indeddgtheomputational cost of the graphic representation of
the scene, often leaves a narrow margin in the dynamic mdktisin addition, have to be simulated in real time. For
this reasons, a low computational cost is a must for any mbdéehas to be used for RTCG applications.

Another characteristic of RTCG applications is their coaxftly, involving models of very different kind of systems,
and their high degree of interactivity. Thus, the capabdita certain model to be integrated in an interactive manner
within a complex application, and its flexibility to simutas wide range of situations, are usually very appreciated
features, rather than a very accurate model.

Within the field of simulation for training, crane simulasdnave become a useful tool in many industry fields, as
training is dangerous and expensive, and also because lit@atyoms can be reproduced in a simulator and not with a
real crane, for safety reasons. Such simulators involvgatexmechanical systems of the machinery and of the loads,
but one of the aspects most poorly modeled so far is pulleycabté systems, used in most cranes.

Pulley and cable dynamics

Cable dynamics has been extensively studied from diffemedelling methodologies [1, 2, 3] leading, in most
cases, to non-linear partial differential equations orrndadielement schemes. These models, however, are addressed
to a good understanding of the problem or to an accurate ation| useful for structure analysis or design, and the
associated numerical models are computationally interesid not adequate for RTCG applications. Also, a common
problem not often considered [4], is the pay-out/reel-ibgesss, that is the basis of load lift and boom movement.

By the other side, cable-pulley models can be found as elenfierfinite element analysis [5, 6, 7], or in analysis of
traction systems such as elevators or transport belts.[Bu®]as in the previous case, models found in the biblidgyap
are computationally to expensive to our needs. Moreovey tisually do not consider the dynamics of the cable
between two pulleys.



We present a computationally efficient model for a cable ardtaf pulleys attached to rigid bodies. The model
considers both the forces that appear on these bodies, andd¢hlatory movement of the cable segments, as well as
the pay-out/reel-in process. Also, it allows an straightfard integration in complex simulation environments,hwit
the possibility of collision with other bodies in the envirnent.

The rest of the paper is organised as follows. First a ddsmnipf the system, based upon a damped spring
is presented, together with some notation. Then, the wauatien with variable coefficients is proposed for the
simulation of the oscillation of the cable between pulldyater, the two models are coupled, in order to obtain a
unique model, paying attention to some implementatioreissu

CABLE AND PULLEYS MODEL

In this section we describe the model that provides the ¢ansi the cable from the position of every pulley. It allows
the dynamic interaction of the cable-pulley system withréw of the simulated environment.

The cable is first considered as a force element that actsedoaitiies linked to it. A cable suspended by its ends is
considered as a massless, damped spring. The stiffnegsuigbokthe spring is given by the young modulf the
cable and by its length, ask = E/L. Thus, two forces will appear at both ends of the cable if tiseadce between
theml is grater than the original (undeformed) length of the cébl€his force, that we will call tension, is given by

T:{max(EU—L)—c(lt—Lt)p) if1>L @
0 otherwise

wherec is a damping constant, which depends on the properties afible. Herd.; represents the rate of shortening
or lengthening of the cable per unit time, considering theat/reel-in process, aridthe change rate of the distance
[, per unit time. The maximum, applied at (1), bans the pd#silihat repulsion forces might appear due to the
damping term. According to this model, no variation in thesien is possible along the cable, avoiding the related
calculus and preventing from possible instabilities dukigh frequency modes.

Now let us address a cable that passes through a set of pibiatsepresent pulleys attached to the world or to
some bodies. The pulleys are considered massless andrtésds, allowing free movement of the cable along them,
and tension at both sides of the pulley to be the same [2]. £ebasider a set of nod&, . .., Py, everyone of them
possibly attached to a body. We shall denote the Euclidestardie between nodeandi + 1 aslj = \dﬂ =|R+1—R|
fori=0,...,N—1. Let us make a cable pass through this succession of peirgs; node is considered as a pulley,
while nodes 0 antll are considered as the points where both ends of the cabliyilyg linked.

Just applying the scheme presented above, the tensioraimettoy calculating the difference between the length
of the cable. and the sum of the distances of neighbour nddes |;. Once the tension is obtained, it can be applied
to every body that is attached to one of the pulleys of theesyst

Before every step of the simulated world, distanigesnd the current length of the cable: 5 |; together with their
change rates, are calculated. Then, tenSigmcalculated, using (1). At every poiRtattached to a body, apply forces
F = —lel/li,l andFi+ = TJi/Ii, except at node’, andRy where onIyFOJr andFy_, are applied, respectively.

CABLE OSCILLATION MODEL

In the model depicted so far mass is deprecated, and thurt@inor oscillation of a cable segment are considered.
This has two negative effects in the simulation; the boditgched to the cable are not affected at all by these
phenomena, and the visual quality of the simulation is redudo overcome these drawbacks a model based on
the wave equation will be coupled with the spring model ineorth consider cable oscillations.

The wave equation with variable coefficients

The evolution of an elastic string, suspended by its endrpéd, and under the action of an external fdf¢g,t),
is given by the partial differential equation [10]

Uit +Clk = a(t)zuxx+ F(th); U(O,t) = g(t)a U(| at> = h(t)7 (2)



FIGURE 1. Variables of the oscillation model

whereu(x,t) is the distance of point on the string, from the segment that joins both ends, at tifk@inctiona(t)
represents the propagation speed of a pulse along the attinget, and depends on the string tensibft) and density
p by the relationshi@?® = T /p. The wave equation with variable coefficients has been atlioly many authors, both
analytically and numerically [11, 12, 13]. Equation (2) ¢snscaled by means of the change of varidble x, leading
to an equivalent model in the unit interval:

2
Ut +Cly = %Uss+ Flst);  u(0t)=g(t);  u(Lt)=nht). ®3)

Oscillating cable

Let us consider the cable segment that goes from FbiotpointR_. 1. Now the oscillation of the points of the cable
is to be considered. In order to clarify the presentatiom 2Htlimensional case will be considerBd= (P!, P?)) € %2

Under the previously stated assumptions of constant terasid density across the cable, let us consider a point at
the cable betweeR andR, 1, and letx be the horizontal distance of the point frétn The transversal deviation of this
point will be denoted as(x,t) (see Figure 1). Using the scaled equation (3), the evolutfar{x,t) can be modeled
by

U+t = p(lT_l)zuss+F<ls,t>; WO = PRL;  u(Lt) =2, (0). (@)
I

This model is a variable coefficient equation, as both theitenof the cabld and the horizontal distance between
the nodes! = [P , — B!| are time dependent.

At this point a remark is necessary in order to justify the afsequation (4); the time dependencd;pimakes that
in the variable changks = X, time derivatives ofi(s,t) involve partial derivatives respect to the spatial vagabbs a
result of the chain rule application. However, equatiorig4ahe equation chosen for the model, neglecting such terms.
In order to understand this reason, a note on the magnitddasloand! is necessary.

A steel cable of the type used in a tower crane has a densit2kfiin, and usually works under a tension between
5000N and 50000N (higher in the case of heavy load cranet))evigths between pulleys of 5-50m. If these numbers
are introduced in the equation, the neglected terms aread@relers of magnitude smaller than those in equation (4).

So, even though the used model is less accurate when calgh lisnvarying, the nonlinear wave equation (4)
still gives a behaviour that is within the needs of our amgilem with less computational cost, and has the important
advantage that finite difference schemes inherit the #fapiloperties of the constant coefficient version [13].

COUPLING OF THE MODELS AND DISCUSSION

Two models have been presented so far, for the dynamic diimulaf a cable and pulleys system; the one for the
global tension, that provides the means for interacting thie environment (application of forces), and the othext th
simulates the movement of the cable between nodes. Now dinglyetween the models will be proposed, in order
to develop a unique model that considers both behaviours.

The first model proposed in this work takes as its input thaaddeformed) length of the cable, calculated from
the position of the nodes. This input is given by the evolutidd the environment by the evolution of these positions.
Then atension is computed, that provides the forces that floe output, influencing the dynamics of the environment.
The second model takes as input the tension of the cable ardryth of each segment, and provides the transversal
displacement of the cable at every point.



The output of the first model (the tension of the cable) is tipii of the wave equation model. In order to close
the loop, the calculation of the input of the spring modelaketinto account the shape of each cable segment; the
deformed length of the cable will be the sum of the arc lengftevery cable segment, according to the wave equation
model. Using an explicit finite difference scheme for thautioh of the wave equation, the algorithm can be depicted
as follows:

1. Using last value of andl;, evolve one step of the finite difference scheme for the wguaton,
2. Calculate an approximation to the arc length of every segin and current cable length= 3 |;
3. Calculate the new value of tensidrusing formula (1),

4. At every pointR, apply forcess™ = —lel/li,l andFR* = ToTi/Ii, except at node®, andRy where onlyF"
andFy_, are applied, respectively.

Simulation Results

The proposed model has been implemented and integrated iorame simulators; a Tower Crane simulator and a
Rubber Tyred Gantry Crane simulator. Some efficiency corspas have been done, with a multibody chain model
similar to the one presented in [4]. The results are hightigfeectory, as the computational cost of the proposed sehem
is between one tenth and one fiftieth of the cost of the mudijtapproach using the augmented formulation approach.
Indeed, the cost of the multibody approach provoked thedb&eal-Time once the total number of chain nodes was
between 25 and 30, with severe instability problems in maggrisingular configurations.

CONCLUSION

A cable and pulleys system dynamics model has been presantedxplained. A combination of a simple spring
model together with a variable coefficient wave equatiomldetn a straightforward computational scheme, for the
simulation of cable-pulleys systems. This model coversntiaén needs of real-time computer graphics simulations;
low computational cost and the capability of performingematctive simulations in complex simulation environments.

The model is integrated in a very straightforward manner ectianical models of cranes, bridges, etc. for its
output is a set of forces applied at given points. Collisi@tedtion, together with a dynamic node insertion and
deletion procedure, can be easily integrated, allowindithiinteractivity. No cable model has been found so far in
the bibliography, with such capabilities for real time iatetive simulation.

As a continuation of this work, a more in depth evaluatiorhefneglected terms in the wave equation with variable
length has to be done. Also, the possibility of using différenite difference schemes, seeking for efficiency and
stability has to be evaluated.
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